Part |
Theory of Parallelism

Chapter 1
Paralle]l Computer Models

Chapter 2
Program and Network Properties

Chapter 3
Principles of Scalable Performance

Summary

This theoretical part presents computer models, program behavior, architectural choices, scalability,
programmability, and performance issues related to parallel processing. These topics form the
foundations for designing high-performance computers and for the development of supporting software
and applications.

Physical computers modeled include shared-memory muitiprocessors, message-passing multicomput-
ers, vector supercomputers, synchronous processor arrays, and massively parallel processors. The theo-
retical parallel random-access machine (PRAM) model is also presented, Differences between the PRAM
madel and physical architectural models are discussed. The VLS| complexity model is presented for
implementing parallel algorithms directiy in integrated circuits.

Network design principles and parallel program characteristics are introduced. These include
dependence theory, computing granularity, communication latency, program flow mechanisms, network
properties, performance laws, and scalability studies, This evolving theory of parallelism consolidates our
understanding of parallet computers, from abstract models to hardware machines, software systems, and
performance evaluation.

Parallel Computer Models

Over the last two decades, computer and communication technologies have literafly transformed the
world we five in. Parallel processing has emerged as the key enabling technology in modern computers,
driven by the ever-increasing demand for higher performance, lower costs, and sustained productivity in
real-life applications.

Parallelism appears in various forms, such as lookahead, pipelining, vectorization, concurrency,
simuitaneity, data paralielism, partitioning, interleaving, overlapping, multipiicity, replication, time sharing,
space sharing, multitasking, multiprogramming, multithreading, and distributed computing at different
processing levels.

In this chapter, we model physical architectures of parallel computers, vector supercomputers,
multiprocessors, multicomputers, and massively parallel processors. Theoretical machine models are also
presented, including the parallel random-access machines (PRAMs) and the complexity model of VLSI
(very targe-scale integration) circuits. Architectural development tracks are identified with case studies
in the book. Hardware and software subsystems are introduced to pave the way for detailed studies in
subsequent chapters.

1.4 | THE STATE OF COMPUTING |

Modern computers are equipped with powerful hardware facilities driven by extensive
software packages. To assess state-of-the-art computing, we first review historical milestones
in the development of computers. Then we take a grand tour of the crucial hardware and software elements
built into modern computer systems. We then examine the evolutional relations in milestone architectural
development. Basic hardware and software factors are identified in analyzing the performance of computers.

1.1.1 Computer Development Milestones

Prior to 1945, computers were made with mechanical or electromechanical parts. The earliest mechanical
corputer can be traced back to 500 BC in the form of the abacus used in China. The abacus is manually
operated to perform decimal arithmetic with carry propagation digit by digit.

Blaise Pascal built a mechanical adder/subtractor in France in 1642. Charles Babbage designed a difference
engine in England for polynomial evaluation in 1827. Konrad Zuse built the first binary mechanical computer
in Germany in 1941, Howard Aiken proposed the very first electromechanical decimal computer, which was
built as the Harvard Mark 1 by IBM in 1944. Both Zuse’s and Aiken’s machines were designed for gencral-
purpose computations.

4 P Advanced Computer Architecture

Obviously, the fact that computing and communication were carried out with moving mechanical parts
greatly limited the computing speed and refiability of mechanical computers. Modem computers were marked
by the introduction of electronic components. The moving parts in mechanical computers were replaced by
high-mobility electrons in electronic computers. Information transmission by mechanical gears or levers was
replaced by electric signals traveling almost at the speed of light.

- Computer Generations Over the past several decades, electronic computers have gone through roughly
five generations of development. Table 1.1 provides a summary of the five generations of electronic computer
development. Each of the first three generations lasted about 10 years. The fourth generation covered a time
span of 15 years. The fifth generation today has processors and memory devices with more than 1 billion
transistors on a single silicon chip.

7/

The division of generations is marked primarily by major changes in hardware and software technologies.
The entries in Table 1.1 indicate the new hardware and software features introduced with each generation.
Most features introduced in earlier generations have been passed to later generations.

Table 1.1 Five Generations of Electronic Computers

Generation Technology and Software and Representative
Architecture Applications Systems
First Vacuum tubes and relay Machine/assembly languages, ENIAC,
(1945-54) memories, CPU driven by single user, no subroutine Princeton [AS,
PC and accurnulator, linkage, 1BM 701.
fixed-point arithmetic. programmed /O using CPU.
Second Discrete transistors and HLL used with compilers, IBM 7090,
(1955-64) cote memories, subroutine libraries, batch CDC 1604,
floating-point arithmetic, processing monitor. Umivac LARC.
I/Q processors, multiplexed
MEmoTy access.
Third Integrated circuits (SSL/- Multiprogramming and time- IBM 360/370,
(1965-74) MSI), microprogramming, sharing OS, multiuser applications. CDC 6600,
pipelining, cache, and TI-ASC,
lookahead processors. PDP-8,
Fourth LSI/VLSI and semiconductor| Multiprocessor OS, languages, VAX 9000,
(1975-90) memory, multiprocessors, compilers, and enviromments Cray X-MP,
vector supercotputers, for parallel processing. 1BM 3050,
multicomputers. BBN TC2000.
Fifth Advanced VLS] processors, Superscalar processors, systems Sec Tables 1.3-1.6
{(1991-present) memory, and switches, on a chip, massively parallel and Chapter 13.
high-density packaging, processing, grand challenge
scalable architectures. applications, heterogeneous
' processing.

Progress in Hardware As far as hardware technology is concerned, the first generation (1945-1954) used
vacuum tubes and relay memories interconnected by insulated wires. The second generation (1955-1964)

Parallet Computer Models —_—.

was marked by the use of discrete transistors, diodes, and magnetic ferrite cores. interconnected by printed
circuits.

The third generation (1965-1974) began to use integrated circuits (ICs) for both logic and memory in
small-scale ot medium-scale integration (SSI or MSI) and multilayered printed circuits. The fourth generation
(1974-1991) used large-scale or verv large-scale integration (LSI or VLSI). Semiconductor memory replaced
core memory as computers moved from the third to the fourth generation.

The fifth generation (1991-present) is highlighted by the use of high-density and high-speed processor
and memory chips based on advanced VLSI technology. For example, 64-bit GHz range processors are now
available on z single chip with over one billion transistors.

The First Generation From the architectural and software points of view, first generation computers
were butlt with a single central processing unit (CPU) which performed serial fixed-point arithmetic using a
program counter, branch instructions. and an accumulator. The CPU must be involved in all memory access
and inputioutput (1/Q) operations, Machine or assembly languages were used.

Representative systems include the ENIAC (Electronic Numerical Integrator and Calculator) built at the
Moore School of the University of Pennsylvania in 1950; the IAS (Institute for Advanced Studies) computer
based on a design proposed by John von Neumann, Arthur Burks, and Herman Goldstine at Princeton in
1946; and the IBM 701, the first electronic stored-program commercial computer built by IBM in 1953,
Subroutine linkage was not iruplemented in early computers.

The Second Generation Index registers, floating-point arithmetic, multiplexed memory, and /O
processors were introduced with second-generation computers. High level languages (HLLs), such as Fortran,
Algol, and Cobol, were introduced along with compilers, subroutine libraries, and batch processing monitors.
Register transfer language was developed by Irving Reed (1957) for systematic design of digital computers.

Representative systems include the IBM 7030 (the Stretch computer) featuring instruction lookahead and
error-correcting memories built in 1962, the Univac LARC (Livermore Atomic Research Computer) built in
1959, and the CDC 1604 built in the 1960s,

The Third Generation The third generation was represented by the [BM/360-370 Series, the CDC
6600/7600 Series, Texas Instruments ASC (Advanced Scientific Computer}), and Digital Equipment’s PDP-§
Series from the mid-1960s to the mid 1970s.

Microprogrammed control became popular with this generation. Pipelining and cache memory were
introduced to close up the speed gap between the CPU and main memory. The idea of multiprogramming was
implemented to interleave CPU and /O activities across multiple user programs, This led to the development
of time-sharing operating systems (OS) using virtual memery with greater sharing or multiplexing of
resources.

The Fourth Generation Parallel computers in various architectures appeared in the fourth generation of
computers using shared or distributed memory or optional vector hardware. Multiprocessing OS, special
languages, and compilers were developed for paralielism. Software tools and environments were created for
parallel processing or distributed computing.

Representative systems include the VAX 9000, Cray X-MP, IBM/3090 VF, BBN TC-2000, etc. During
these 15 years (1975-1990), the technology of parallel processing gradually became mature and entered the
production mainstream.

6 Wi Advanced Computer Architecture

The Fifth Generation These systems emphasize superscalar processors, cluster computers, and massively
parallet processing (MPP). Scalable and latency tolerant architectures are being adopted in MPP systerns
using advanced VLSI technologies, high-density packaging, and optical technologies.

Fifth-generation computers achieved Teraflops (10]2 floating-point operations per sccond) performance
by the mid-1990s, and have now crossed the Petatlop (10"* floating point operations per second) range.
Heterogeneous processing is emerging to solve large-scale problems using a network of heterogeneous
computers, Early fifth-generation MPP systems were represenied by several projects at Fujitsu (VPP500),
Cray Research (MPP), Thinking Machines Corporation (the CM-5), and Intel (the Paragon). For present-day
examples of advanced processors and systems; see Chapter 13.

1.4.2 Elements of Modern Computers

Hardware, software, and programming elements of a modern computer system are briefly introduced below
in the context of parallel processing.

Computing Problems [t has been long recognized that the concept of computer architceture is no longer
restricted to the structure of the bare machine hardware. A modern cormputer is an integrated system consisting
of machine hardware, an instruction set, system software, application programs, and user interfaces. These
system elements are depicted in Fig. 1.1. The use of a computer is driven by real-iife problems demanding cost
effective solutions. Depending on the nature of the problems, the solutions may requite different computing
IESOUTCES.

Computing
Problems Operating
Systemn
i
Algorthms| Mapping Hardware
and Data Architecture
Structures
Pragramming
Binding Apnlications Softw
{complle, load) pplications are
High-ilevel
Languages

Perfermance
Evaluation

Fig.1.1 Elements of a modern computer system

For numerical problems in science and technology, the solutions demand complex mathematical
formulations and intensive integer or floating-point computations. For alphanumerical problems in business

Parallel Computer Models o 7

and government, the solutions demand efficient transaction processing, large database management, and
information retrieval operations.

For artificial intelligence (AI) problems, the solutions demand logic inferences and symbolic manipuiations.
These computing problems have been labeled numerical compuling, transaction processing, and logical
reasoning. Some complex problems may demand a combination of these processing modes,

Algorithms and Data Structures Special algorithms and data structures are needed to specify the
computations and communications involved in computing problems. Most numerical algorithms are
deterministic, using regularly structured data. Symbolic processing may use heuristics or nondeterministic
searches over large knowledge bases.

Problem formulation and the development of paratlel algorithms often require interdisciplinary interactions
among theoreticians, experimentalists, and computer programmers. There are many books dealing with the
design and mapping of algorithms or heuristics onto paraltel computers. In this book, we are more concened
about the resources mapping problem than about the design and analysis of parallel algorithms.

Hardware Resources The system architecture of a computer is represented by three nested circles on the
right in Fig. 1.1. A modern computer system demonstrates its power through coordinated efforts by hardware
resources, an operating system, and application software. Processors, memory, and peripheral devices form
the hardware core of a computer system. We will study instruction-set processors, memory organization,
multiprocessors, supercomputers, multicomputers. and massively parallel computers.

Speciai hardware interfaces are often built into 1/0 devices such as display terminals, workstations, optical
page scanners. magnetic ink character recognizers, modems, network adaptors, voice data entry, printers,
and plotters. These peripherals are connected to mainframe computers directly or through local or wide-area
networks.

In addition, software interface programs are needed. These software interfaces include file transfer
systems, editors, word processors, device drivers, interrupt handlers, network communication programs, etc.
These programs greatly facilitate the portability of user programs on different machine architectures.

Operating System An effective operating system manages the allocation and deallocation of resources
during the execution of user programs. Beyond the OS, application software must be developed to benefit the
users. Standard benchmark programs are needed for performance evaluation.

Mapping is a bidirectional process matching algorithmic structure with hardware architecture, and vice
versa. Efficient mapping will benefit the programmer and produce better source codes. The mapping of
algorithmic and data structures onto the machine architecture includes processor scheduling, memory maps,
interprocessor communijcations, etc. These activities are usually architecture-dependent,

Optimal mappings are sought for various computer architecturcs. The implementation of these mappings
relies on efficient compiler and operating system support. Parallelism can be exploited at algorithm design
time, at program time. at compile time, and at run time. Techniques for exploiting parallelism at these levels
form the core of parallel processing technology.

System Software Support Software support is needed for the development of efficient programs in high-
level languages. The source code written in a HLL must be first translated into object code by an optimizing
compiler. The compiler assigns variables to registers or to memory words, and generates machine operations
corresponding to HLL operators, to produce machine code which can be recognized by the machine hardware.
A loader is used to initiate the program execution through the OS kernel.

g " Advanced Computer Architectire

Resource binding demands the use of the compiler, assembler. loader. and OS kernel to commit physical
machine resources to program execution. The effectiveness of this process determines the efficiency
of hardware utilization and the programmability of the computer. Today, programming parallclism is
still difficult for mosi programmers due to the fact that existing languages were originally developed for
sequential computers. Programmers are sometimes forced to program hardware-dependent features instead of
programming parallelism in a generic and portable way. Ideally, we need to develop a parallel programming
environment with architecture-independent languages, compilers, and software tools.

To develop a parallel language, we aim for efficiency in its implementation, portability across different
machines, compatibility with existing sequential languages. expressiveness of paralielism, and ease of
programming. One can attempt a new language approach or try to extend existing sequential languages
gradualty. A new language approach has the advantage of using explicit high-level constructs for specifying
parallelism. However, new languages are often incompatible with existing languages and require new
compilers or new passes to existing compilers. Most systems choose the language extension approach; one
way to achieve this is by providing appropriate function libraries.

Compiler Support There are three compiler upgrade approaches: preprocessor, precompiler, and
parallelizing compiler. A preprocessor uses a sequential compiler and a low-level library of the target
computer to implement high-level parallel constructs. The precompiler approach requires some program flow
analysis, dependence checking, and limited optimizations toward parallelism detection. The third approach
demands a fully developed parallelizing or vectorizing compiler which can automatically detect parallelism
in source code and transform sequential codes into parallel constructs. Thesc approaches will be studied in
Chapter 10,

The efficiency of the binding process depends on the cffectiveness of the preprocessor, the precompiler,
the parallelizing compiler, the loader, and the OS support. Due to unpredictable program behavior, none of the
existing compilers can be considered fully automatic or fully inteiligent in detecting all types of parallelism.
Very often compiler directives are inserted into the source code to help the compiler do a better job. Users
may interact with the compiler to restructure the programs. This has been proven useful in enhancing the
performance of parallel computers.

1.4.3 Evolution of Computer Architecture

1

The study of computer architecture involves both hardware organization and programming/softwarc
requirements. As seen by an assembly language programmer, computer architecture is abstracted by its
instruction set, which includes opcode (operation codes), addressing modes, registers, virtual memory. etc.

From the hardware implementation point of view, the abstract machine is organized with CPUs, caches,
buses, microcode, pipelines, physical memory, etc. Therefore, the study of architecture covers both instruction-
set architectures and machine implementation organizations.

Over the past decades, computer architecture has gone through evolutional rather than revolutionat
changes. Sustaining features are those that were praven performance deliverers. As depicted in Fig. 1.2, we
started with the von Neumann architecture built as a sequential machine executing scalar data . The sequential
computer was improved from bit-serial to word-parallel operations, and from fixed-point to floating point
operations. The von Neumann architecture is slow due to sequential execution of instructions in programs.

Parallel Computer Models . 9

Legends:
IfE: Instruction Fetch and Execute.
5IMD: Single Instruction stream and
Multiple Data streams
. SequenliaD G_ookahe@ MIMD: Multiple Instruction streams

and Muitiple Data streams
Functional
Parallelism
Muitiple
Fung. Unitg

Imnplicit
Vector

Pipeline

Vector

Register-to
-Register

Associative (Processor (Multicomputer) {” Multiprocessor
ProcessD (Array)C i)(P)

Massively paralief
processors (MPP)

Fig. 1.2 Tree showing architectural evolution from sequential scalar computers to vector procassors and

Lookahead, Parallelism, and Pipelining Lookahead techniques were introduced to prefetch instructions
in order to overlap I/E (instruction fetch/decode and execution) operations and to enable functional
parallelism. Functional paraltelism was supported by two approaches: One is to use multiple functional units
simultaneously, and the other is to practice pipelining at various processing levels.

The latter includes pipelined instruction execution, pipelined arithmetic computations, and memory-access
operations. Pipelining has proven especially attractive in performing identical operations repeatedly over
vector data strings, Vector operations were originally carried out implicitly by software-controlied looping
using scalar pipeline processors.

Flynn’s Clossification Michael Flynn (1972) introduced a classification of various computer architectures
based on notions of instruction and data streams, As illustrated in Fig. 1.3a, conventional sequential machines
are called SISD (single instruction stream over a single data stream) computers, Vector computers are
equipped with scalar and vector hardware or appear as SIMD (single instruction stream over multiple data
streams} machines (Fig. 1.3b). Paraliel computers are reserved for MIMD (muitiple instruction streams over
muitiple data streams) machines.

-

An MISD (multiple instruction streams and a single data stream) machine is modeled in Fig, 1.3d. The
sane data stream flows through a linear array of processors executing different instruction streams. This

o ", Advanced Computer Architecture

architecture is also known as systofic arrays (Kung and Leiserson, 1978) for pipelined execution of specific
algorithms.

il el R
S . - Sels
IS IS o . loaded
- Program loaded . . from
IS DS fram host DS DS hast
. ,I;:‘ cu | pu MU PEn [+ LMy ==
(a) SISD uniprocessor architecture {b} SIMD architecture (with distributed memory}
Captions:
CU = Control Unit IS - J
PU = Processing Unit VO CY1 s 1 P "ps
- MU = Memory Unit . . Shared |*
IS = Instruction Stream : : Memory :
PE = Processing Element 1S l’_' l“_'

LM = Local Memory

{¢) MIMD architecture {with shared memory}

15 [see) |18 oy, U, ces E‘E

Memory .y 18 IS L IS
/| torogram | ps —— ps [~ Ds .
and data) = PU, w PUy |—» s0e —» PU, »
l t
DS
o)

(d) MISD architecture (the systolic array)
Fig.1.3 Fiynn's classification of computer architectures (Derived from Michael Fiynn, 1972) -

Of the four machine models, most parallel computers built in the past assumed the MIMD model for general-
purpose computations. The SIMD and MISD models are more suitable for special-purpose computations. For

this reason, MIMD is the most popular model, SIMD next, and MISD the least popular model being applied
in commercial machines.

Paraliel/Yector Computers Intrinsic parallel computers are those that execute programs in MIMD mode.
There are two major classes of parallel computers, namely, shared-memory multiprocessors and message-
passing multicomputers. The major distinction between multiprocessors and multicomputers lies in memory
sharing and the mechanisms used for interprocessor communication.

The processors in a multiprocessor system communicate with each other through shared variables in a
common memory. Each computer node in a multicomputer systetn has a local memory, unshared with other
nodes. Interprocessor communication is done through message passing among the nodes. _

Explicit vector instructions were introduced with the appearance of vecior processors. A vector processor
is equipped with multiple vector pipelines that can be concurrently used under hardware or firmware control.
There are two families of pipelined vector processors:

Memory-to-memory architecture supports the pipelined flow of vector operands directly from the memory
to pipelines and then back to the memory, Register-to-register architecture uses vector registers to interface
between the memory and functional pipelines. Vector processor architectures will be studied in Chapter 8.

Another important branch of the architecture tree consists of the SIMD computers for synchronized
vector processing. An SIMD computer exploits spatial parallelism rather than temporal parallelism as in a
pipelined computer. SIMD computing is achieved through the use of an array of processing elements (PEs)
synchronized by the same controller. Associative memory can be used to build SIMD associative processors.
SIMD machines will be treated in Chapter 8 along with pipelined Xector computers.

Development Layers A layered development of parallel computers is illustrated in Fig. 1.4, based on a
classification by Lionel Ni (1990). Hardware configurations differ from machine to machine, even those of
the same model. The address space of a Processor in a computer system varies among different architectures.
it depends on the memory organization, which is machine-dependent, Thesc features are up to the desi gner
and should match the target application domains.

Applications T
Programming Environment Machine
T Languages Supported Independent
Machine Communication Model l
Dependent Addressing Space
_ l Hardware Architecture

Fig.1.4 Six layers for computer system development {Courtesy of Lionet Ni, 1990)

On the other hand, we want to develop application programs and programming environments which
are machine-independent. Independent of machine architecture, the user programs can be ported to many
computers with minimum conversion costs. High-level languages and communication models depend on the
architectural choices made in a computer system. From a programmer’s viewpoint, these two layers shouid
be architecture-transparent.

Programming languages such as Fortran, C, C++, Pascal, Ada, Lisp and others can be supported by maost
computers. However, the communication models, shared variables versus message passing, are mostly
machine-dependent. The Linda approach using tuple spaces offers an architecture-transparent communication
model for parallel computers. These language features will be studied in C hapter 10.

Application programmers prefer more architectural transparency. However, kernel programmers have to
explore the opportunities supported by hardware. As a good computer architect, one has to approach the
problem from both ends. The compiters and OS support should be desi gned to remove as many architectural
constraints as possible from the programmer.

12 M. Advanced Computer Architecture

New Challenges The technology of parallel processing is the outgrowth of several decades of research
and industrial advances in microelectronics, printed circuits, high density packaging, advanced processors,
memory systems, peripheral devices, communication channels, language evolution, compiler sophistication,
operating systems, programming environments, and application challenges.

The rapid progress made in hardware technology has significantly increased the economical feasibility of
building a new generation of computers adopting parallel processing. However, the major barrier preventing
parailel processing from entering the production mainstream is on the software and application side.

To date, it is still fairly difficult to program parallel and vector computers. We need to strive for major
progress in the software area in order to create a user-friendly environment for high-power computers.
A whole new generation of programmers need to be trained to program parallelism effectively. High-
performance computers provide fast and accurate solutions to scientific, engineering, business, social, and
defense probiems.

Representative real-life problems include weather forecast modeling, modeling of physical, chemical and
biological processes, compuiter aided design, large-scale database management, artificial intelligence, crime
control, and strategic defense initiatives, just to name a few. The application domains of parallel processing
computers are expanding steadily. With a good understanding of scalable computer architectures and mastery
of paraltet programming techniques, the reader will be better prepared to face future computing challenges.

1.1.4 System Attributes to Performance

The ideal performance of a computer system demands a perfect match between machine capability and
program behavior. Machine capability can be enhanced with better hardware technology, innovative
architectural features, and efficient resources managemeni. However, program behavior 1 difficult to predict
due to its heavy dependence on application and run-time conditions.

There are also many other factors affecting program behavior, including algorithm design, data structures,
language efficiency, programmer skill, and compiler technology. It is impossible to achieve a perfect match
between hardware and software by merely improving only a fow factors without touching other factors.

Besides, machine performance may vary from program to program. This makes peak performance an
impossible target to achieve in real-iife applications. On the other hand, a machine cannot be said to have an
average performance either. All performance indices ot benchmarking results must be tied to a program mix.
For this reason, the performance should be described as a range or a distribution.

We introduce below fundamental factors for projecting the performance of a computer. These performance
indicators are by no means conclusive in all applications. However, they can be used to guide system architects
in designing better machines or to educate programmers of compiler writers in optimizing the codes for more
efficient execution by the hardware.

Consider the execution of a given program on a given computer. The simplest measure of program
performance is the turnaround time, which includes disk and memory accesses, input and output activities,
compilation time, OS overhead. and CPU time. In order to shorten the turnaround time, one must reduce all
these time factors.

In a multiprogrammed computer, the 1/O and system overheads of a given program may overlap with the
CPU times required in other programs. Therefore, it is fair to compare just the total CPU time needed for
program execution. The CPU is used to execute both system programs and user programs, although often it
is the user CPU time that concemns the user most.

Parallel Computer Models -

Clock Rate and CPl The CPU (or simply the processor) of today’s digital computer is driven by a clock
with a constant cycle time 7. The inverse of the cycle time is the clock rate (f=1/T). The size of a program is
determined by its instruction count (1,), in terms of the number of machine instructions to be executed in the
program. Different machine instructions may require different numbers of clock cycles to execute. Therefore,
the cycles per instruction (CPT) becomes an important parameter for measuring the time needed to execute
each instruction.

For a given instruction set, we can calculate an average CP1 over all instruction types, provided we know
their frequencies of appearance in the program. An accurate estimate of the average CPI requires a large
amount of program code to be traced over a long period of time. Unless specifically focusing on a single
instruction type, we simply use the term CPI to mean the average value with respect to a given instruction set
and a given program mix,

Performance Factors Let /. be the number of instructions in a given program, or the instruction count.
The CPU time (7 in seconds/program) needed to execute the program is estimated by finding the product of
three contributing factors:

T=I.xCPIxt (1.1)

The execution of an instruction requires going through a cycle of events inveolving the instruction fetch,
decode, operand(s) fetch, execution, and store results. In this cycle, only the instruction decode and execution
phases are carried cut in the CPU. The remaining three operations may require access io the memory. We
define a memory cycle as the time needed to complete one memory reference. Usually, a memory cycle is &
times the processor cycle 7. The value of k depends on the speed of the cache and memory technology and
processor-memory interconnection scheme used.

The CPI of an instruction type can be divided into two component terms corresponding to the total
processor ¢cycles and memory cycles needed to complete the execution of the instruction. Depending on the
instruction type, the complete instruction cycle may involve one to as many as four memory references (one
for instruction fetch, two for operand fetch, and one for store results). Therefore we can rewrite Eq. 1.1 as
follows:

T=Lx(p+mxkxt (1.2)

where p is the number of processor cycles needed for the instruction decode and execution, m is the number
of memory references needed, k is the ratio between memory cycle and processot cycle, /. 1s the instruction
count, and 7 is the processor cycle time. Equation 1.2 can be further refined once the CPI components (p, #1,
k) are weighted over the entire instruction set,

System Attributes The above five performance factors (7. p, m, &, 1) are influenced by four system
attributes: instruction-set architecture, compiler technology, CPU implementation and contrel, and cache and
memory hierarchy, as specified in Table 1.2.

The instruction-set architecture affects the program length (Z,) and processor cycles needed (p). The
compiler technology affects the values of 7, p, and the memory reference count (m). The CPU implementation
and control determine the total processor time (p - 1) needed. Finally, the memory technology and hierarchy
design affect the memory access latency (k - 7). The above CPU time can be used as a basis in estimating the
execution rate of a processor.

14~ Advanced Computer Architecture

Table 1.2 Performance Factors versus System Attributes

Performance Factors
Syt Instr: Average Cyeles per Instruction, CPI Processor
Stem S ol hniele R
v Count, Processor Memory Memory- Cycle
Attributes
1. Cycles per References per Access Time,
) Instruction, p Instruction, mi Latency, k T
Instruction-set
o v v
Architecture
Compiler v v v
Technology
Processor
Implementation v v
and Control
Cache and
Memory v v
Hierarchy

MIPS Rate Let C be the total number of clock cycles needed to execute a given program. Then the CPU
time in Eq. 1.2 can be estimated as 7= Cx 7= C/f. Furthermore, CP1 = C/I, and T= I, x CPI x =1 X CPLY.
The processor speed is often measured in terms of million instructions per second (MIPS), We simply call
it the MIPS rate of a given processor. It should be emphasized that the MIPS rate varies with respect to a
number of factors, including the clock rate (7, the instruction count (1), and the CPI of a given machine, as
defined below:

I
MIPS rate = e = S == S x v
Tx10” CPI x 10 CxI10

(1.3)

Based on Eq. 1.3, the CPU time in Eq. 1.2 can also be written as T'= [% 10/MIPS. Based on the system
attributes identified in Table 1.2 and the above derived expressions, we conclude by indicating the fact that
the MIPS rate of a given computer is directly proportional to the clock rate and inversely proportional to the
CPL All four system attributes, instruction set, compiler, processor, and memory technologies, affect the
MIPS rate, which varies also from program to program because of variations in the instruction mix.

Floating Point Operations per Second Most compute-intensive applications in science and engineering
make heavy use of floating point operations. Compared to instructions per second, for such applications a
more relevant measure of performance is floating point operations per second, which is abbreviated as flops.
With prefix mega (10%), giga (10%), tera (10'%) or peta {(10'%), this is written as megaflops (mflops), gigafiops
(gflops), teraflops or petaflops.

Throughput Rate Another important concept is related to how many programs a system can execute per
unit time, called the system throughput W, (in programs/second). In a multiprogrammed system, the system
throughput is often lower than the CPU throughput W, defined by:

S/

W, = —— 1.4
P 1. xCPI (149

Paraliel Computer Models - |5

Note that W, = (MIPS) x 106H from Eq. 1.3. The unit for W, is also programs/second. The CPU
throughput is a measure of how many programs can Be executed per second, based ‘only on the MIPS rate
and average program length (1) Usually W, < ¥, due to the additional system overheads caused by the /0,
compiler, and OS when multiple programs are 1nterleaved for CPU execution by multiprogramming or time-
sharing operations. If the CPU is kept busy in a perfect program-interleaving fashion, then #, = W,. This will
probably never happen, since the system overhead often causes an extra delay and the CPU may be left idle
for some cycles.

)

Consider the use of two systems S, and S, to execute a hypothetical benchmark program. Machine
characteristics and claimed performance are given below:

Example 1.1 MIPS ratings and performance measurement

Machine Clock Performance CPU Time
S 500 MHz 100 MIPS 12x seconds
8. 2.5 GHz 1860 MIPS x seconds

These data indicate that the measured CPU time on S, is 12 times longer than that measured on S,. The
object codes running on the two machines have different lengths due to the differences in the machines and
compilers used. All other overhead times are ignored.

Based on Eq. 1.3, we can see that the instruction count of the object code running on S; must be 1.5 times
longer than that of the code running on $;. Furthermore, the average CPI on §, is seen to be 5, while that on
S, is 1.39 executing the same benchmark program.

Sy has a typical CISC (complex instruction set computing) architecture, while S, has a typical RISC
(reduced instruction set computing) architecture to be characterized in Chapter 4. This example offers a
simple comparison between the two types of computers based on a single program run. When a different
program is run, the conclusion may not be the same.

We cannot calculate the CPU throughput), unless we know the program length and the average CPI of
each code. The system throughput W, should be measured across a farge number of programs over a long
observation period. The message being conveyed is that one should not draw a sweeping conclusion about
the performance of a machine based on one or a few program runs.

Programming Environments The programmability of a computer depends on the programming
environment provided to the users. In fact, the marketability of any new computer sysiem depends on the
creation of a user-friendly environment in which programming becomes a productive undertaking rather than
a challenge. We briefly introduce below the environmental features desired in modern computers.

Conventional uniprocessor computers are programmed in a sequential environment in which instructions
are executed one after another in a sequential manner. In fact, the original UNTX/0S kernel was designed to
respond to one system call from the user process at a time. Successive systemn calls must be serialized through
the kernel.

16 M. Advanced Computer Architecture

When using a parallel computer, one desires a paraile! environment where parallelism is automatically
exploited. Language extensions or new constructs must be developed to specify parallelism or to facilitate
easy detection of parallelism at various granularity levels by more intelligent compilers.

Besides parallel languages and compilers, the operating systems must be also cxtended to support parallel
processing. The OS must be able to manage the resources behind paralielism. Important issues include
parallel scheduling of concurrent processes, inter-process communication and synchronization, shared
memory allocation, and shared peripheral and communication links.

Implicit Parallelism An implicit approach uses a conventional language, such as C, C++, Fortran, or Pascal,
to write the source program. The sequentially coded source program is translated into parallel object code
by a parailelizing compiler. As illustrated in Fig. 1.5a, this compiler must be able to detect parallelism and
assign target machine resources. This compiler approach has been applied in programming shared-memory
multiprocessors.

With parallelism being implicit, success relies heavily on the “intelligence” of a parallelizing compiler.
This approach requires less effort on the part of the programmer.

Explicit Parallelism The second approach (Fig. 1.5b) requires more effort by the programmer to develop
a source program using parallel dialects of C, C++, Fortran, or Pascal. Parallelism is explicitly specified in
the user programs. This reduces the burden on the compiler to detect parallelism. Instead, the compiler needs
to preserve parallelism and, where possible, assigns target machine resources. New programming language
Chapel (see Chapter 13} is in this category.

{ Programmer) { Programmer)

¥ L

Source code written Source code written
in sequential {anguages in concurrent dialects
C, G++, Fortran, or of C, C++, Fortran,
Pascal or Pascal
i
Parallglizing Concurrency
compiler preserving compiler
i y
Parallel Concurrent
object code abject code
¥ ¥
Execution by Execution by
runtime systam runtime system
{a) Implicit parallelism {h) Explicit parallelism

Fig. 1.5 Two approaches to paraflel programming (Courtesy of_Clwl'les Senz.. adapted with permission from
“Concurrent Architectures”, p. 51 and p. 53, VLSI and Poralfel Computation, edited by Suaya and Birtwisde,
Morgan Kaufmann Publishers, 1990)

Parallel Computer Models . |,

Special software tools are needed to make an environment more friendly to user groups. Some of the
tools are paraliel extensions of conventional high-level languages. Others are mntegrated environments which
include tools providing different levels of program abstraction, validation, testing, debugging, and tuning;
performance prediction and monitoring; and visualization support to aid program development, performance
measurement, and graphics display and animation of computational results.

Two categories of parallel computers are architecturally modeled below. These physical
models are distinguished by having a shared common memory or unshared distributed
memories. Only architectural organization models are described in Sections 1.2 and 1.3. Theoretical and
complexity models for parallel computers are presented in Section 1.4.

1.2.1 Shared-Memory Muitiprocessors

We describe below three shared-memory multiprocessor models: the uniform memory-access {UMA) model,
the nonuniform-memory-access (NUMA) model, and the cache-only memory architecture (COMA) model.
These models differ in how the memory and peripheral resources are shared or distributed.

The UMA Model n a UMA multiprocessor model (Fig. 1.6), the physical memory is uniformly shared
by all the processors. All processors have equal access time to all memory words, which is why it is called
uniform memory access. Each processor may use a private cache. Peripherals are also shared in some fashion.

Processors

P1 P2 sone Pn

3] I

¥ 3 3
System Interconnect
{Bus, Crossbar, Muitistage network)
X F

3 ¥ 1
fia] SM1 suna SMI’TI
Shared Memory

' Fig. 1.6 The UMA multiprocessor madet

Multiprocessors are called fightly coupled systems due io the high degree of resource sharing. The system
interconnect takes the form of a common bus, a crossbar switch, or a multistage network to be studied in
Chapter 7.

Some computer manufacturers have multiprocessor (MP) extensions of their uniprocessor {UP) product
line. The UMA model is suitable for general-purpese and timesharing applications by multiple users. It can be
used to speed up the execution of a single large program in time-critical applications. To coordinate parallel
events, synchronization and communication among processors are done through using shared variables in
the common memory.

18 - Advanced Computer Architecture

When all processors have equal access to all peripheral devices, the system is called a symmerric
multiprocessor, In this case, all the processors are equally capable of running the executive programs, such as
the OS kernel and /O service routines.

In an asymmetric multiprocessor, only one or a subset of processors are executive-capable. An executive
or a master processor can execute the operating system and handle /0. The remaining processors have no
/O capability and thus are called attached processors (APs). Attached processors execute user codes under
the supervision of the master processor. In both MP and AP configurations, memory sharing among master
and attached processors is still in place.

b
& : Example 1.2 Approximated performance of
a multiprocessor

This example exposes the reader 10 parallel program execution on a shared memory multiprocessor system.
Consider the following Fortran program written for sequential execution on a uniprocessor systen. All the
arrays, A(I), B(D), and C(I), are assumed to have N elements.

L1: Do 101=1,N

L2: A(D =Bl + C(I)
L3: - 10 Continue

14: SUM =10

L5: Do20J=1N

Lé: SUM =SUM + A(D)
L7 20 Continue

Suppose each line of code L2, L4, and L6 takes 1 machine cycle to execute. The time required to execte the
program control statements L1, L3, 1.5, and L7 is ignored to simplify the analysis. Assume that k cycles are needed
for each interprocessor communication operation via the shared memory.

Initially, all arrays are assumed already loaded in the main memory and the short program fragment
already loaded in the instruction cache. In other words, instruction fetch and data loading overhead is ignored.
Also, we ignore bus contention or memory access conflicts problems. In this way, we can concentrate on the
analysis of CPU demand.

The above program can be executed on a sequential machine in 2N cycles under the above assumptions.
N cycles are needed to execute the N independent iterations in the / loop. Similarly, N ¢ycles are needed for
the J loop, which contains N recursive iterations.

To execute the program on an M-processor system, we partition the looping operations into M sections
with I =N/M elements per section. In the following parallel code, Deall declares that all A sections be
executed by M processors in parallel.

For M-way parallel execution, the sectioned / loop can be done in L cycles.

The sectioned J loop produces M partial sums in L cycles. Thus 2L cycles are consumed to produce all M
partial sums. Still, we need to merge these A partial sums to produce the final sum of X elements.

Paraliel Computer Models 19

DeoallK = 1. M
Dol0[=(K-1}*L+1,K*L
A =B+ CMH
10 Continue
SUM(K) =0
Do20J=1,L
SUM(K) = SUM(K) +A((K -) * L+ J)
20 Continue
Endall

The addition of each pair of partial sums requires & cycles through the sharcd memory. An Hevel
binary adder tree can be constructed to merge all the partial sums, where / = loga M. The adder tree takes
I(k + 1) cycles to merge the M partial sums sequentially from the leaves to the root of the tree. Therefore, the
multiprocessor requires 2L + ik + 1)} = 2N/M + (k + 1)log, M cycles to produce the final sum.

Suppose & = 2% elements in the array. Sequential execution of the original program takes 2N = 22!
machine cycles. Assume that each TPC synchronization overhead has an average value of k = 200 cycles.
Parallel execution on M = 256 processors requires 2'* + 1608 = 9800 machine cycles.

Comparing the above timing results, the multiprocessor shows a speedup factor of 214 out of the maximum
value of 256. Therefore, an efficiency of 214/256 = 83.6% has been achicved. We will study the speedup and
efficiency issues in Chapter 3.

The above result was obtained under favorable assumptions about overhead, In reality, the resulting
speedup might be lower after considering all software overhead and potential resource conflicts. Nevertheless,
the example shows the promising side of parallel processing if the interprocessor communication overhead
can be maintained to a sufficiently low level, represented here in the value of 4.

—The NUMA Model A NUMA muitiprocessor is a shared-memory system in which the access time varies
with the location of the memory word. Two NUMA machine models are depicted in Fig. 1.7. The shared
memory is physically distributed to all processors, calted local memories. The collection of all local memories
forms & global address space accessible by all processors.

Itjs faster to access a local memory with a iocal processor. The access of remote memory attached to other
processors takes fonger due to the added delay through the interconnection network. The BBN TC-2000
Butterfly multiprocessor had the configuration shown in Fig. 1.7a.

Besides distributed memories, globally shared memory can be added to a multiprocessor system. In this
case. there are three memory-access patterns: The fastest is local memory access. The next is global memory
access. The slowest is access of remote memory as illustrated in Fig. 1.7b. As a matter of fact, the inodcls
shown in Figs. 1.6 and 1.7 can be easily modified to alfow a mixture of shared memory and private memory
with prespecified access rights.

A hierarchically structured multiprocessor is modeled in Fig. 1.7b, The processors are divided into several
clusters*. Each cluster is itself an UMA or a NUMA multiprocessor. The clusters are connected to global
shared-memory modules. The entire system is considered a NUMA multiprocessor. All processors belonging
to the same cluster are altowed to uniformly access the cluster shared-memory modules.

*The word ‘cluster’ is used in a different sense in cluster computing, as we shall sce later.
puting

20 "

All clusters have equal access to the global memory. Howev
shorter than that to the global memory. One can specify the access 1
various ways. The Cedar multiprocessor, built at the University o

cluster was an Alliant FX/80 multiprocessor.

Advanced Computer Architecture

Inter-
connection
Network

(a) Shared local memories (e.g. the
N Butterfly)

Fig.1

GSM GS5M GSM
Y s !

¥ ¥ 9

r Global interconnect Network J
e
! ' ; :
? : : :
g NinlinE
P N) v N)
. ! P)
1 1
I : 'i :
g B ET [P oM
| Cusert | * CuusterN |

er, the access time to the cluster memory is
ights among intercluster memories in
fIllinois, had such a structure in which each

Legends:

P: Processor
CSM. Cluster
Shared Memory
GSM: Global
Shared Memory
CIN: Cluster
interconnection
Network

(b} A higrarchical cluster model (e.g. the Cedar system at the Uni-

versity of #lincis)

.7 Twe NUMA models for multiprocessor systems

/- The COMA Model A multiprocessor using cache-only memory assumes the COMA model. Early
examples of COMA machines include the Swedish Institute of Computer Science’s Data Diffusion Machine
(DDM, Hagersten et al., 1990) and Kendall Square Research’s KSR-1 machine (Burkhardt et al., 1992). The
COMA model is depicted in Fig. 1.8. Details of KSR-1 are given in Chapter 9.

Interconnection Network

0 D
ce e
[P] [P |

D
[P]

Fig. 1.8 The COMA modet of a multiprocessor (P Processor, C: Cache, D: Directory; eg. the K5R-1)

The COMA model is a speci

al case of a NUM

A machine, in which the distributed main memories are

converted to caches. There is po memory hierarchy at each processor node. All the caches form a global

Paralle! Computer Modeds . 3,
address space. Remote cache access is assisted by the distributed cache directories (D in Fig. 1.8). Depending
on the interconnection network used, sometimes higrarchical directories may be used to help locate copies of
cache blocks, Initial data placement is not critical because data will eventually migrate to where it will be used.

Besides the UMA, NUMA, and COMA models specified above, other variations exist for multiprocessors.
For example, a cache-coherent non-uniform memory access (CC-NUMA) model can be specified with
distributed shared memory and cache directories. Early examples of the CC-NUMA model include the
Stanford Dash (Lenoski et al., 1990) and the MIT Alewife (Agarwal et al., 1990) to be studied in Chapter 9.
A cache-coherent COMA machine is one in which all cache copies must be kept consistent,

Representative Multiprocessors Several early commercially available multiprocessors are surnmarized
in Table 1.3. They represent four classes of multiprocessors. The Sequent Symmetry S81 belonged to a
class called minisupercomputers. The [BM System/390 models were high-end mainframes, sometimes called
near-supercomputers. The BBN TC-2000 represented the MPP class.

Table 1.3 Some Early Commercial Multibrocessor Systems

Company Hardware and Software and Remarks

and Model Architecture Applications

Sequent Bus-connected with DYNIX/0S, Latter models designed

Symmetry 30 1386 processors, KAP/Sequent with faster processors of

S-81 {PC via SLIC bus; Preprocessor, the family.

Weitek floating-point transaction
accelerator. multiprocessing.

IBM ES/9000 6 ES/9000 processors 0S8 support: MVS, Fiber optic channels,

Model with vector facilities, VM KMS, AIX/370, integrated

S00/VF ¢rosshar connected parallel Fortran, cryptographic
to 10 channpels and VSF V2.5 compiler. architecture.
shared memory.

BBN TC-2000 512 M88100 Ported Mach/O8 Latter models designed
processors with local with multiclustering, with faster processors of
memory connected paralle} Fortran, the family.
by a Butterfly time-critical
switch, a NUMA applications.
machine,

The $-81 was a transaction processing multiprocessor consisting of 30 1386/i486 microprocessors tied
to a common backplane bus. The IBM ES/9000 models were the latest [BM mainframes having up to 6
processors with attached vector facilities. The TC-2000 could be configured to have 512 MB8100 processors
interconnected by a multistage Butterfly network. ‘(his was designed as a NUMA machine for real-time or
time-critical applications.

22 i Advanced Compuiter Architecture

Multiprocessor systems are suitable for general-purpose multiuser applications where programmability 13
the major concern. A major shortcorning of multiprocessors is the lack of scalability. It is rather difficult to
build MPP machines using centralized shared memory model. Latency tolerance for remote memory access
is also a major lmitation.

Packaging and cooling impose additional comstraints on scalability. We will study scalability and
programmability in subsequent chapters.

1.2.2 Distributed-Memory Multicomputers

A distributed-memory multicomputer system is modeled in Fig. 1.9. The system consists of multiple
computers, often called nodes, interconnected by a message-passing network. Each node is an autonomous
computer consisting of a processor, local memory, and sometimes attached disks or I/O peripherals.

M M M

P P P
[4 1:
¥ b Y

=
o
3
¥

Message-passing - P M
interconnection network
(Mesh, ring, torus,
hypercube, cube-

M| P l«—= connected cycle, ofc.} [e—={ P | M

3

K 4
¥ y i
P P . an P
M M M

Fig. 1.9 Generic model of 2 message-passing multicomputer

The message-passing network provides point-to-point static connections among the nodes. All local
memories are private and are accessible only by local processors. For this reason, traditional multicomputers
have also been called no-remote-memory-access (NORMA) machines. Internode communication is carried
out by passing messages through the static connection network. With advances in interconnection and
network technologies, this model of computing has gained importance, because of its suitability for certain
applications, scalability, and fault-tolerance.

Multicomputer Generations Modern multicomputers use hardware routers to pass messages. A computer
node is attached to each router. The boundary router may be connected to 1/0 and peripheral devices. Message
passing between any two nodes involves a sequence of routers and channels. Mixed types of nodes are
allowed in a heterogeneous multicomputer. The internode communication in a heterogeneous multicomputer
is achieved through compatible data representations and message-passing protocols.

Early mes<age-passing muiticomputers were based on processor board technology using hypercube
architecture and software-controlled message switching. The Caltech Cosmic and Intel iPSC/1 represented
this early development.

The second generation was impiemented with mesh-connected architecture, hardware message routing,
and a software environment for medium-grain distributed computing, as represented by the Intel Paragon and
the Parsys SuperNode 1000.

Paraile! Computer Models m‘ 23

Subsequent systems of this type are fine-grain multicomputers, early examples being the MIT J-Machine
and Caltech Mosaic, implemented with both processor and communication gears on the same VLSI chip. For
further discussion; see Chapter 13.

In Section 2.4, we will study various static network topologies used to construct multicomputers.
Commonly used topologies include the ring, free, mesh, torus, hypercube, cube-connected cycle, etc. Various
communication patterns are demanded among the nodes, such as one-to-one, broadcasting, permutations, and
multicast patterns.

Important issues for multicomputers include message-Touting schemes, network flow control strategies,
deadlock avoidance, virtual channels, message-passing primitives, and program decomposition techniques.

Representative Multicomputers Three carly message-passing multicomputers are summarized in
Table 1.4. With distributed processor/memory nodes, such machines are better in achieving a scalable
performance. However, message passing imposes a requirement on programmers 10 distribute the
computations and data sets over the nodes or to establish efficient communication among nodes.

Table 1.4 Some Early Commercial Multicomputer Systems

System Intel nCUBE? Parsys Lid.
Features Paragon XP/S 6480 SuperNodel (00
Node Types 50 MHz i860 XP Each node contains a EC-funded Esprit
and Memory computing nodes with CISC 64-bit CPL, supernode built with
16128 Mbytes per with FPU, 14 DMA multiple T-800
node, special 'O ports, with 1--64 Transputers per node.
service nodes. Mbytes /ode.
Network and 2-D mesh with SCSI, 13-dimensional Reconfigurable
f10) HIPPI, VME, hypercube of 8192 interconnect,
Ethemet, and custom nodes, 512-Gbyte expandable to have
0. memory, 64 1/0 1024 processors,
boards.
OS and OSF conformance Vertex/OS or UNIX IDRIS/OS
Software Task with 4.3 BSD, supporting message UNIX-compatible.
Parallelism visualization and passing using
Support programming wormhole routing.
support.
Application General sparse matrix Scientific number Scientific and
Drivers methods, parallel crunching with scalar academic
data manipulation, nodes, databasc applications.
strategic computing. processing.
Performance 5-300 Gfiops peak 27 Gflops peak, 36 200 MIPS to 13 GIPS
Remarks 64-bit results, 2.8-160 Gbytes/s 'O peak.
GIPS peak integer
performance. :

14 i Advanced Computer Architecture

The Paragon system had a mesh architecture, and the nCUBE/2 had a hypercube architecture. The lotel
1860s and some custom-designed VLSI processors were used as building blocks in these machines. All three
0O8s were UNIX-compatible with extended functions to support message passing.

Most multicomputers can be upgraded to yield a higher degree of parallelism with enhanced processors.
We will study various massively parallel systems in Part IlI where the tradeoffs between scalability and
programrnability are analyzed.

1.2.3 ATaxonomy of MIMD Computers

Parallel computers appear as either SIMD or MIMD configurations. The SIMDs appeal more to special-
purpose applications. It is clear that SIMDs are not size-scalable, but unclear whether targe SIMDs are
generation-scalable. The fact that CM-5 had an MIMD architecture, away from the SIMD architecture in
CM-2, represents the architectural trend (see Chapter 8). Furthermore, the boundary between multiprocessors
and multicomputers has become blurred in recent years.

The architectural wrend for general-purpose parallel computers is in favor of MIMD configurations with
various memory configurations (see Chapter 13). Gordon Bell (1992) has provided a taxonomy of MIMD
machines, reprinted in Fig. 1.10. He considers shared-memory multiprocessors as having a single address
space. Scalable multiprocessors or multicomputers must use distributed memory. Multiprocessors using
centrally shared memory have limited scalability.

Dynamic binding of

addresses to processors
KSR

Static binding, ring multi
{EEE SC! standard proposal
Static binding, cacheing
Alliani, DASH

Static program binding

BBN, Codar, CM"

Distributed memory
multiprocessors
{scalable)

Multiprocessors Cross-point or multi-stage
Singte Address Space Cray, Fujitsu, Hitachi, IBM,
Shared Memory NEC, Tara

Computation Simple, ring muiti, bus
Central memory muti repiacement
mutiprocassors Bus mukis

(not scalable) DEC, Encore, NCH, ..

Sequent, SGI, Sun

MIME Mesh connected
fniat
Distributed Butterfiy/Fat Tree
) CMS
multicomputers
{scalahle) Hypercubes
NCUBE
Fast LANSs for high
Multicomputers availability and high
Multiple Address Space capacity clusters
Message-Passing DEC, Tandem
Computation

LANS for distributed
processing
workstations, PCs

Central multicomputers

Fig. 1.10 Bell's taxonomy of MIMD computers (Courtesy of Gordon Beill; reprinted with permission from the
Communications df ACM, August 1992)

Paraltel Computer Models T

Multicomputers use distributed memories with multiple address spaces. They are scalable with distributed
memory. The evolution of fast LAN (Jocal area network)-connected workstations has created “commodity
supercomputing”. Bell was the first to advocate high-speed workstation clusters interconnected by high-
speed switches in lieu of special-purpose multicomputers. The CM-5 development was an early move in that
direction,

The scalability of MIMD computers will be further studied in Section 3.4 and Chapter 9. In Part III, we
will study distributed-memory multiprocessors (KSR-1, SCI, etc.); central-memory multiprocessors (Cray,
IBM. DEC, Fujitsu, Encore, etc.); multicomputers by Intel, TMC, and nCUBE; fast LAN-based workstation
clusters, and other exploratory research systems.

MULTIVECTOR AND SIMD COMPUTERS

In this section, we introduce supercomputers and parallel processors for vector processing
and data parallelism. We classify supercomputers either as pipelined vector machines using a
few powerful processors equipped with vector hardware, or as SIMD computers emphasizing massive data
parallelism.

1.3.1 Vector Supercomputers

A vector computer is often built on top of a scalar processor. As shown in Fig. 1.11, the vector processor
is attached to the scalar processor as an optional feature. Program and data are first loaded into the main
memory through a host computer. All instructtons are first decoded by the scalar control unit. If the decoded
instruction is a scatar operation or a program control operation, it will be directly executed by the scalar
processor using the scalar functional pipelines.

Sralar
o Functional
Pipelines

Vector Processor

]
l :
1
I
[1
1
' :
1
1
: oo
v [l
! Scalar Instructions |
1
1 : '
: .
I
1
! 1
: :
1 1

Scaiar Vector Co::terga Gnn
Cornirol Unit nstructions
i ¥ Control

_________________ P 1

i

. Instructions 1 Vectar Func, Pipa,
1
L] -

i
i
Main Memory [ectdr N i
i
i
i

Scalar {Program and | paia' | Vector .
Data Data) I_IRegisters)
|
Host .:
Mass Computer| !
Storage| R e e LT !
YO {User)

Fig. 1.1 The architecture of 2 vector supercomputer

24 "V Advanced Computer Architecture

I the instruction is decoded as a vector operation, it will be sent to the vector controt unit. This control
unit will supervise the flow of vector data between the main memory and vector functional pipelines. The
vector data flow is coordinated by the control unit. A number of vector functional pipelines may be built into
a vector processor. Two pipeline vector supercomputer models are described below.

Vector Processor Models Figure 1.11 shows a register-fo-register architecture. Vector registers are used
to hold the vector operands, intermediate and final vector results. The vector functional pipelines retrieve
operands from and put results into the vector registers. All vector registers are programmable in user
instructions. Fach vector register is equipped with a component counter which keeps track of the component
registers used in successive pipeline cycles.

The length of each vector register is usually fixed, say, sixty-four 64-bit component registers in a vector
register in a Cray Series supercomputer, Other machines, like the Fujitsu VP2000 Series, use reconfigurable
vector registers to dynamically match the register length with that of the vector operands.

In general, there are fixed numbers of vector registers and functional pipelines in a vector processor.
Therefore, both resources must be reserved in advance to avoid resource conflicts between different vector
operations. Some early vector-register based supercomputers are summarized in Table 1.5.

Table 1.5 Some Early Commercial Yector Supercomputers

System Vector Hardware Architecture Compiler and
Model and Capabilities Software Support
Convex GaAs-based multiprocessor Advanced C, Fortran,
C3800 with 8 processors and and Ada vectorizing
family 500-Mbyte/s access port. and paralleiizing compilers.

4 Gbytes main memory. Alse supported interprocedural

2 Gflops peak optimization,

performance with POSIX 1003.1/08

concurrent scalar/vector plus /O interfaces

operations. and visualization system
Digital Integrated vector processing MS or ULTRIX/OS,
VAX 9000 in the VAX énvironment, VAX Fortran and
System 125-500 Mflops WVAX Vector Instruction

peak perfortnance. Emulator (VVIEF)

63 vector instructions. for vectorized

16 x 64 % 64 vector registers. program debugging.

Pipeline chaining possible.
Cray Research Y-MP ran with 2, 4, or CF77 compiler for
Y-MP and 8 processors, 2.67 Gflop automatic vectorization,
C-90 peak with Y-MP8256. C-90 scalar optimization,

had 2 vector pipes/CPU and paraliel processing.

built with 10K gate ECL UNICOS improved

with 16 Gfiops peak performance. from UNIX/V and

Berkeley BSD/OS.

Porallel Computer Models ..

A memory-to-memory architecture differs from a register-to-register architecture in the use of a vector
stream unit to replace the vector registers, Vector operands and results are directly retrieved from and stored
into the main memory in superwords, say, 512 bits as in the Cyber 205.

Pipelined vector supercomputers started with uniprocessor models such as the Cray 1 in 1976. Subsequent
supercomputer systems offered both uniprocessor and multiprocessor models such as the Cray Y-MP Series.

Representative Supercomputers Over a dozen pipelined vector computers have been manufactured,
ranging from workstations to mini- and supercomputers. Notable early examples include the Stardent 3000
multiprocessor equipped with vector pipelines, the Convex C3 Series, the DEC VAX 9000, the IBM 390/
VFE, the Cray Research Y-MP family, the NEC $X Series, the Fujitsu VP2000, and the Hitachi S-810/20. For
further discussion, see Chapters 8 and 13.

The Convex C| and C2 Series were made with ECL/CMOS technologies. The latter C3 Series was based
on GaAs technology.

The DEC VAX 9000 was Digital’s largest mainframe system providing concurrent scalar/vector
and multiprocessing capabilities. The VAX 9000 processors used a hybrid architecture. The vector unit
was an optional feature attached to the VAX 9000 CPU. The Cray Y-MP family offered both vector and
multiprocessing capabilities.

1.3.2 SIMD Supercomputers

In Fig. 1.3b, we have shown an abstract model of SIMD computers having a single instruction stream over
multiple data streams, An operational model of SIMD computers is presemted below (Fig. 1.12) based on the
work of H. J. Siegel (1979). Implementation models and case studies of SIMD machines are given in Chapter 8,

Control Unit
PE D PE 1 PE 2 PE N-1
[Proc. 0} [Proc. 1] | | [Proc. 2] [Proc. N-1]
I ! e
fMem. 0] IMem. 1] | | [Mem. 2] {Mem. N-1|

Intercennection Network

Fig.1.12 Operational model of SIMD computers

SIMD Machine Model An operational model of an SIMD computer is specified by a 5-tuple:
M=(NC, LM R) (1.5)

29~ Advonced Computer Architecture

whereg

(1) N is the number of processing elements (PEs) in the machine. For example, the Hliac IV had 64 PEs
and the Connection Machine CM-2 had 65,536 PEs.

(2) C is the set of instructions directly executed by the control unit (CU), including scalar and program
flow control instructions.

(3) I is the set of instructions broadcast by the CU to ali PEs for parallel execution. These include
arithmetic, logic, data routing, masking, and other local operations executed by each active PE over
data within that PE.

(4) M is the set of masking schemes, where each mask partitions the set of PEs into enabled and disabled
subsets.

(5) R is the set of data-routing functions, specifying various patterns be set up in the interconnection
network for inter-PE communications.

One can describe a particular SIMD machine architecture by specifying the 5-tuple. An exampte SIMD

machine is partially specified below.

L)
& Example 1.3 Operational specification of the MasPar
MP-1 computer

We will study the detailed architecture of the MasPar MP-1 in Chapter 7. Listed below is a partial specification
of the 5-tuple for this machine:

(1) The MP-1 was an SIMD machine with N = 1024 to 16,384 PEs, depending on which configuration is
considered.

(2) The CU executed scalar instructions. broadcast decoded vector instructions to the PE array, and
controlled inter-PE communications.

(3) Each PE was a register-based load/store RESC processor capable of executing integer operations over
various data sizes and standard floating-point operations. The PEs received instructions from the CU.

{4) The masking scheme was built within each PE and continuously monitored by the CU which could set
and reset the status of each PE dynamically at run time.

{5) The MP-} had an X-Net mesh network plus a global muitistage crossbar router for ter-CU-PE,
X-Net nearest 8-neighbor, and global router communications.

Representative SIMD Computers Three carly commercial SIMD supercomputers are summarized in
Table 1.6. The number of PEs in these systems ranges from 4096 in the DAP610 to 16,384 in the MasPar
MP-1 and 65,536 in the CM-2. Both the CM-2 and DAP6106 were fine-grain, bit-slice SIMD computers with
attached floating-point accelerators for blocks of PEs*.

Each PE of the MP-1 was equipped with a 1-bit logic unit, 4-bit integer ALU, 64-bit mantissa unit, and
16-bit exponent unit. Multiple PEs could be built on a single chip due to the simplicity of each PE. The MP-]

* With tapid advances in VLSI technology, use of bit-slice processors in systems has disappeared.

Parallef Computer Models -

implemented 32 PEs per chip with forty 32-bit registers per PE. The 32 PEs were interconnected by an X-Net
mesh, which was a 4-neighbor mesh augmented with diagonal dual-stage links.

The CM-2 implemented 16 PEs as a mesh on a single chip. Each 16-PE mesh chip was placed at one
vertex of a 12-dimensional hypercube. Thus 16 x 22 = 2% = 65,536 PEs formed the entire SIMD array.

The DAP610 implemented 64 PEs as a mesh on a chip. Globally, a large mesh (64 x 64) was formed
by interconnecting these smail meshes on chips. Fortran 90 and modified versions of C, Lisp, and other
sequential programming languages have been developed to program SIMI) machines.

Table 1.6 Some Eary Commercial $IMD Supercomnputers

System SIMD Machine Architecture Languages, Compilers
Model and Capabilities and Software Support

MasPar Designed for confipurations from Fortran 77, MasPar Fortran

Computer 1024 to 16,384 processors with (MPF), and MasPar Parallel

Corporation 26,000 MIPS or 1.3 Gflops. Each Application Language;

MP-1 Family PE was a RISC processor, with 16 UNIX/08 with X-window,
Kbytes local memory. An X-Net symbolic debugger, visualizers
mesh plus a multistage crossbar and animators.
interconnect.

‘Thinking A bit-slice array of up to 65,536 Driven by a host of VAX,

Machines PEs arranged as a 10-dimensional Sun, or Symbuolics 3600, Lisp

Corporation, hypercube with 4 x 4 mesh on each compiler, Fortran 90, C*, and

CM-2 vertex, up to 1M bits of memory *Lisp supported by PARIS
per PE, with optional FPU shared
between blocks of 32 PEs. 28
Gflops peak and 5.6 Gflops
sustained.

Active A fine-grain, bit-slice SIMD array Provided by host VAX/VMS

Memory of up to 4096 PEs interconnected or UNIX Fortran-plus or

Technology by a square mesh with 1 K bits per - APAL on DAP, Fortran 77 or

DAP600 PE, orthogonat and 4-neighbor C on host.

Family links, 20 GIPS and 560 Mflops

* peak performance.

1.4 | PRAMANDVESI MODELS

Theoretical models of parallel computers are abstracted from the physical models studied n
previous sections. These models are often used by algorithm designers and VLSI device/chip
developers. The ideal models provide a convenient framework for developing parallel algorithms without
worry about the implementation details or physical constraints.

The models can be applied to obtain theoretical performance bounds on parallel computers or to estimate
VLSI complexity on chip area and execution time before the chip is fabricated. The abstract models are

30 "l Advanced Computer Architecture

also useful in scalability and programmability analysis, when real machines are compared with an idealized
parallel machine without worrying about communication overhead among processing nodes.

1.4.1 Parallel Random-Access Machines

Theoretical models of parallel computers are presented below. We define first the time and space complexities.
Computational tractability is reviewed for solving difficult problems on computers. Then we introduce the
random-access machine (RAM), parallel random-access machine (PRAM), and variants of PRAMs. These
complexity models facilitate the study of asymptotic behavior of algorithms implementable on parallel
computers.

Time and Space Complexities The complexity of an algorithm for solving a problem of size s on a
computer is determined by the exccution time and the storage space required. The time complexity is a
function of the problem size. The time complexity function in order notation is the asymptotic time complexiry
of the algorithm. Usually, the worst-case time complexity is considered. For example, a time complexity g(s)
is said to be O (f(s)), read “order f(5)”, if there exist positive constants c;, ¢; and 5o such that ¢ / (s} < g(s)
< ¢, f(s), for all nonnegative valucs of s > sp.

The space complexify can be similarly defined as a function of the problem size s. The asymptoric space
complexity refers to the data storage of large problems. Note that the program (code) storage requirement and
the storage for input data arc not considered in this.

The time complexity of a serial algorithm is simply called serial compiexity. The time complexity of a
paraliel algorithm is called parallel complexity. Intuitively, the parallel complexity should be lower than
the serial complexity, at least asymptotically. We consider only deterministic algorithms, in which every
operational step is uniquely defined in agreement with the way programs are executed on real computers.

A nondeterministic algorithni contains operations resulting in one outcome from a set of possible outcomes.
There exist no real computers that can execute nondeterministic algorithms. Therefore. all algorithms (or
machines) considered in this book are deterministic, unless otherwise noted.

NP-Completeness An algorithm has a polynomial complexity if there exists a polynomial p(s) such that the
time complexity is O(p (+)) for problem size s. The set of problems having polynomial-complexity algorithms
is calted P-class (for polynomial class). The set of problems solvable by nondeterministic algorithms in
polynomial time is called NP-class (for nondetermimistic polynomial class).

Since deterministic algorithms are special cases of the nondeterministic ones, we know that P — NP. The
P-class problems are computationally tractable, while the NP - P-class problems are intractable. But we do
not know whether P = NP or P = NP. This is still an open problem in computer science.

To simutate a nondeterministic algorithm with a deterministic algorithm may require exponential time.
Therefore, intractablie NP-class problems are also said to have exponential-time complexity.

L
8] : Example 1.4 Polynomial- and exponential-complexity
algorithms

Polynomial-complexity algorithms are known for sorting » numbers in (X log ») ttme and for multiplication
of two # x 1 matrices in O(ns) time. Therefore, both problems belong to the P-class.

Parallel Computer Models - 3,

Nonpolynomial algorithms have been developed for the traveling salesperson problem with complexity
O(n*2"} and for the knapsack probtem with complexity ({2™*). These complexities are exponential, greater
than the polynomial complexities. So far, deterministic polynomial algorithms have not been found for these
problems. Therefore, these exponential-complexity problems belong to the NPclass.

Most computer scientists believe that P # NP. This leads to the conjecture that there exists a subclass,
called NP-complete (NPC) problems, such that NPC = NP but NPC AP = ¢ (F ig. 1.13). In fact, it has been
proved that if any NP-complete problem is polynomial-time solvable, then one can conclude P = NP, Thus
NP-complete problems are considered the hardest ones to solve. Only approximation algorithms can be
derived for solving the NP-complete problems in polynomial time.

NP NP: Nondeterministic polynomial

time class
@ P: Polynomial-time class.

NPC: NP-complete ctass

Fig. 113 The relationships conjectured among the NP, P and NPC classes of computational problems

PRAM Models Conventional uniprocessor computers have been modeled as random access machines
(RAM) by Sheperdson and Sturgis (1963). A parailel random-access machine (PRAM) model has been
developed by Fortune and Wyllie (1978) for modeling idcalized parallel computers with zero synchronization
or memory access overhead. This PRAM model will be used for paraliel algorithm development and for
scalability and complexity analysis.

An n-processor PRAM (Fig. 1.14) has a globally addressable memory. The shared memory can be
distributed among the processors or centralized in one place. The # processors — also called processing
elements (PEs)—operate on a synchronized read-memory, compute, and write-memory cycle. With shared
memory, the modet must specify how concurrent read and concurrent write of memory are handled. Four
memaory-update options are possible:

.'U L"U
ma -

Tightly
synchronized Shared
Memory

L]
L)
-

Fig. 1.14 PRAM model of a multiprocessor system with shared memory, on which all n processors operate
in lockstep in memory access and program execution operations. Each processor can access any
memory location in unit time

32 T Advanced Computer Architecture

» Exclusive read (ER)—This allows at most one processor to read from any memory location in each
cycle, a rather restrictive policy.
» Exclusive write (EW)—This allows at most one processor to write inte a memory location at a time.

» Concurrent read (CR)}—This allows multiple processors 1o read the sarmne information from the same
memory cell in the same cycle.

« Concurrent write (CW)—This allows simultanecus writes to the same memory location. In order to
avoid confusion, some policy must be set up to resolve the write conflicts.

Various combinations of the above options lead to several variants of the PRAM model as specified below.
Since CR does not create a conflict probiem, variants differ mainly in how they handle the CW conflicts.

PRAM Variants Described below are four variants of the PRAM model, depending on how the memory
reads and writes are handled.

(1) EREW-PRAM model—This model forbids more than one processor from reading or writing the same
memory cell simultaneousty (Snir, 1982; Karp and Ramachandran, 1988). This is the most restrictive
PRAM meodel proposed.

(2) CREW-PRAM model—The write conflicts are avoided by mutual exclusion. Concurrent reads to the
same memory location are allowed.

(3) ERCW-PRAM model—This allows exclusive read or concurrent writes to the same memory location.
(8) CRCW-PRAM model—This model allows either concurrent reads or concurrent writes to the same
memory location.

L)

C(j:l Example 1.5 Multiplication of two n X n matrices in O(log
n) time on a PRAM with n’/ log n processors
(Viktor Prasanna, 1992)

Let 4 and B be the input matrices. Assume n’ PEs are available initially. We later reduce the number of PEs
to n*flog n. To visualize the algorithm, assume the memory is organized as a three-dimensional array with
inputs 4 and B stored in two planes. Also, for the sake of explanation, assume a three-dimensional indexing
of the PEs. PE(i, , k), 0 €k < n— 1 are used for computing the (i, j}th entry of the output matrix, 0 </, j <
n— 1, and n is a power of 2.

In step 1, # product terms corresponding 1o each output are computed using # PEs in O(1) time. In step 2,
these are added to produce an output in O(log #) time.

The total aumber of PEs used is #°. The result is available in C(, j, 0), @ < i, j < n — L. Listed below are
programs for each PE(i, /, k) to execute. All n’ PEs operate in parallel for " multiplications. But at most ni2
PEs are busy for (n3 - nz) additions. Also, the PRAM is assumed to be CREW.

Step 1
1. Read A(i. k)
2. Read Bk, j)

Paralle! Computer Models "R 33

3. Compute A(i, k) x Bk, j}
4. Store in C(i, 7, k)

Step 2
1. fen
2. Repeat
£ £12
if (& < £) then
begin
Reud C(, /4, k)
Read C(i, j, k + £}
Compute C(4, j, k) + Cli, [,k +)
Store in C(i, j, k)
end
until (¢ = 1}

To reduce the number of PEs to naflog #n, use a PE array of s1ze n x r % nflog n. Each PE is responsible for
computing log # product terms and summiny them up. Step 1 can be easily modified to produce n/log » partial
sums, each consisting of log » multiplications and (log »n — 1) additions. Now we have an array C(i, 7, k), 0 <
i,jsn—1,0<k < nflog n- 1, which can be summed up in log{n/log ») time. Combining the time spent in
step | and step 2, we have a total execution time 2 Jog # — 1 + log(n/log #) = O(log ») for large n.

Discrepancy with Physical Models PRAM models idealize paraltel computers, in which all memory
references and program executions by multiple processors are synchronized without extra cost. In reality,
such paraliel machines do not exist. An SIMD machine with shared memory is the closest architecture
modeled by PRAM. However, PRAM allows different instructions 1o be executed on different processors
simultaneously. Theretfore, PRAM really operates in synchronized MIMD mode with a shared memory.

Among the four PRAM variants, the EREW and CRCW are the most popular models used. In fact,
every CRCW algorithm can be simulated by an EREW algorithm. The CRCW algorithm runs faster than an
equivatent EREW algorithm. It has been proved that the best #-processor EREW algorithm can be no more
than O(log) times slower than any n-processor CRCW algorithm.

The CREW model has received more attention in the literature than the ERCW model. For our purposes,
we will use the CRCW-PRAM model unless otherwise stated. This particular model will be used in defining
scalability in Chapter 3.

For complexity analysis or performance comparison, various PRAM variants offer an ideal model of parallel
computers. Therefore, computer scientists use the PRAM model more often than computer engineers. In this
book, we design parallel/vector computers using physical architectural models rather than PRAM models.

The PRAM model will be used for scalability and performance studies in Chapter 3 as a theoretical reference
machine. PRAM models can indicate upper and lower bounds on the performance of real parallel computers.

1.4.2 VLSI Complexity Model

Parallel computers rely on the use of VLS chips to fabricate the major components such as processor
arrays, memory amrays, and large-scale switching networks. An AT® model for two-dimensional VLSI chips

34 " Advanced Computer Architecture

is presented below, based on the work of Clark Thompson (1980). Three lower bounds on VLSI circuits
are interpreted by Jeffrey Ullman (1984). The bounds are obtained by setting limits on memory, 'O, and
communication for implementing paralief algorithms with VLSI chips.

The AT® Mode! Let A be the chip area and 7 be the latency for completing a given computation using a
VLS circuit chip. Let s by the probtem size involved in the computation. Thompson stated in his doctoral
thesis that for certain computations, there exists a lower bound f(s} such that

AXT?2 O(f(s) (1.6)

The chip area 4 is a measure of the chip’s complexity. The latency T is the time required from when inputs
are applied until all outputs are produced for a single problem instance. Figure 1.15 shows how to interpret
the AT° complexity results in VLSI chip development. The chip is represented by the base area in the two
horizontal dimensions. The vertical dimension corresponds to time. Therefore, the three-dimensional solid
represents the history of the computation performed by the chip.

Memory Bound on Chip Area There are many computations which are memory-bound, due to the nced
to process large data sets. To implement this type of computation in silicon, one is limited by how densely
information (bit cells) can be placed on the chip. As depicted in Fig. 1.15a, the memory requirement of a
computation sets a lower bound on the chip area 4.

The amount of information processed by the chip can be visualized as information flow upward across the
chip area. Each bit can flow through a unit area of the horizontal chip slice. Thus, the chip arca bounds the
amount of memory bits stored on the chip.

1f{O Bound on Yolume AT The volume of the reciangular cube is represented by the product AT, As
information flows through the chip for a period of time T, the number of input bits cannot exceed the volume
AT, as demonstrated in Fig. 1.15a.

$ Time 4 Time

i I

T > T H -
l A Chip area —L A JE/

{a) Memory-timiied bound on chip area {b) Communication-limited bound on the
A and [/O-limited bound on chip history bisaction JAT
represented by the volume AT

Fig.1.15 The AT* complexity model of two-dimensional YLSI chips

Parallel Computer Madels " 35

The area 4 corresponds to data into and out of the entire surface of the silicon chip. This areal measure sets
the maximum 1/O limit rather than using the peripheral I/O pads as seen in conventional chips. The height T
of the volume can be visualized as a number of snapshots on the chip, as computing time elapses. The volume
represents the amount of information flowing through the chip during the entire course of the computation.

Bisection Communication Bound, VAT Figure 1.15b depicts a communtcation limited lower bound
on the bisection area VAT . The bisection is represented by the vertical slice cutting across the shorter
dimension of the chip area. The distance of this dimension is ¥4 for a square chip. The height of the cross
sectionis T.

The bisection area represents the maximum amount of information exchange between the two halves of
the chip circuit during the time period T. The cross-section area VAT limits the communication bandwidth
of a computation. VLSI complexity theoreticians have used the square of this measure, 47, to which the
lower bound applies, as seen in Eq. 1.6.

o8

This example shows how to estimate the chip area 4 and compute time T for # x » matrix multiplication
(' = 4 x B on a mesh of processing elements {PEs) with a broadcast bus on each row and each column. The
2-D mesh architecture is shown in Fig. 1.16. Inter-PE communication is done through the broadcast buses.
We want to prove the bound AT = O(n*) by developing a parallel matrix multiplication algorithm with time
T'= O(n) in using the mesh with broadcast buses. Therefore, we need to prove that the chip area is bounded
by 4 = O(r?).

Each PE occupies a unit area, and the broadcast buses require O(nz) wire area. Thus the total chip area
needed is O(#°) for an # x n mesh with broadcast buses. We show next that the » X # matrix multiplication can
be performed on this mesh chip in = O(n) time. Denote the PEs as PE(j, j), 0 <, j<n— 1.

Initially the input matrix elements A(i, ;) and B(i, j) are stored in PE(i, /) with no duplicated data. The
memory is distributed among all the PEs. Each PE can access only its own local memory. The following
parallel algorithm shows how to perform the dot-product operations in generating all the output elements
CG,J)= ZI2h AL k) x Bk, j) for0< i, j<n-1.

Example 1.6 VLSI chip implementation of a matrix multi-
plication algorithm (Viktor Prasanna, 1992)

36 1. Advanced Computer Architecture

—

N — o
n-m'i»u.
mLN - OL
4] H*iﬂ!

] b
H'H'H'#'
.

-
L
(3%
! { !

Fig.1.16 A 4 x 4 mesh of processing elements (PEs) with broadcast buses on each row and on each column
(Courtesy of Prasanna Kumar and Raghavendra; reprinted from journal of Paraliel and Distributed

Computing, April 1987)
Doall 10 for0 <, jsn—1
10 PE(i, /) sets C(i, j) to O /Initiatization/

Do50for0<k<mn—1
Doall 20 for0<i<n-1

20 PE(i, k) broadcasts A(7, k) along its row bus
Doall 30 for0<j<nm-1
30 PE(k, /) broadeasts B(k, /) along its column bus

/PE(i, /Y now has A{i, k) and B(k, j}, 0 i, f<n-V
Doalt 40 for 0=, jsn~-1
40 PE(i, j) computes C(i, /) - C(i, /) + Ali, k) X B(k.)
50 Continue

The above algorithm has a sequential loop along the dimension mdexed by k. 1t takes n time units
(iterations) in this &-loop. Thus, we have T = O(n). Therefore, AT = Oy (O()* = o).

[ﬂ ARCHITECTURAL DEVELOPMENT TRACKS . -

The architectures of most existing computers follow certain development tracks. Understanding
features of various tracks provides insights for ncw architectural development. We look into
six tracks to be studied in later chapters. These tracks are distinguished by similarity in computational models
and technological bases. We also review a few early representative systems in each track.

1.5.1 Multiple-Processor Tracks

Generally speaking, a multiple-]jrocessor system can be either a shared-memory multiprocessor or a
distributed-memory multicomputer as modcled in Section 1.2. Bell listed these machines at the leaf nodes of

Paraltel Computer Madels - ;7

the taxonomy tree (Fig. 1.10). Instead of a hori¥ontal listing, we show a historical development along each
important track of the taxonomy.

Shared-Memory Track Figure 1.17a shows a track of multiprocessor development employing a single
address space in the entire system. The track started with the C.mmp system developed at Carmegie-Mellon
University (Wulf and Bell, 1972). The C.mmp was an UMA multiprocessor. Sixteen PDP 11/40 Processors
were interconnected to 16 shared-memory modules via a crossbar switch. A special interprocessor interrupt
bus was provided for fast interprocess communication, besides the shared memory. The C.mmp project
pieneered shared-memory multiprocessor development, not only in the crossbar architecture but also in the
multiprocessor operating system (Hydra) development.

Stanford/Dash
{Lenoski, Hennessy et al, 1992)

. Fujitsu VPPS500
:ﬂ:}"c‘;‘se?:?ar (Fujitsu, Inc. 1992)
1987)
KSR1
CMU/C.mmp (Kendall Square Research,1990)
{(Wulf and Bell, 1972)
IBM RP3

NYL/ (Pfister et al, 1985}
Ultracomputer

{Gottlieb et al, 1983

BBN Butterfly
{BBN,1989)
{a) Shared-memory track
nCUBE-2/6400
nCUBE Corp. 1990)

. Intel iPSC’s inte! Paragon
%ﬁQ‘?&lﬁe {Intei Scientific ——— = {Intel Supercomputer
(Computers, 1983) Systems, 1992)

Mesaic MIT/J Machine

(Seitz1992) — "~ (Dally et al, 1992)
{b) Message-passing track

Fig. 1.17 Two multiple-processor tracks with and without shared memory

Both the NYU Ultracomputer project (Gottlieb et al,, 1983) and the Hiinois Cedar project (Kuck et al.,
1987} were developed with a single address space. Both systems used multistage networks as a system
interconnect. The major achievements in the Cedar project were in parallel compiters and performance
benchmarking experiments, The Ultracomputer developed the combining network for fast synchronization
among multiple processors, to be studied in Chapter 7.

3g "Ml Advanced Computer Architecture

The Stanford Dash {Lenoski, Hennessy et al., 1992) was a NUMA multiprocessor with distributed
memories forming a global address space. Cache coherence was enforced with distributed directories. The
KSR-1 was a typical COMA model. The Fujitsu VPP 500 was a 222-processor system with a crossbar
interconnect. The shared memories were distributed to all processor nodes. We will study the Dash and the
KSR-1 in Chapter 9 and the VPP500 in Chapter 8.

Following the Ultracomputer are two large-scale multiprocessors, both using multistage networks but
with different interstage connections to be studied in Chapters 2 and 7. Among the systems listed in Fig.
1.17a, only the KSR-1, VPP500, and BBN Butterfly (BBN Advanced Computers, 1989) were commercial
products. The rest were research systems; only prototypes were built in laboratories, with a view to validate
gpecific architectural concepts.

Message-Passing Track The Cosmic Cube (Seitz et al., 198]) pioneered the development of message-
passing multicomputers (Fig. 1.17b). Since then, Intel produced a series of medium-grain hypercube
computers {the iPSCs). The nCUBE 2 also assumed a hypercube configuration. A subsequent Intel system
was the Paragon (1992) to be studied in Chapter 7. On the research track, the Mosaic C (Seitz, 1992) and the
MIT 3-Machine (Dally et al., 1992) were two fine-grain multicomputers, to be studied in Chapter 9.

1.5.2 Muitivector and SIMD Tracks

The muitivector track is shown in Fig. 1.18a, and the SIMD track in Fig. 1.18b, with corresponding early
. representative systems of each type.

CDC Cyber205 ETA10
(Levine, 1982) (ETA, Inc. 1989)
CDC 7600
(€DC1970) Cray Y-MP Cray/MPP
{Cray Research, 1989) {Cray Research, 1993)
Cray 1
{Russell, 1978)
Fujitsu, NEC. Hitachi Models
{a) Multivector track
DAF 610
(AMT, Inc. 1987)
Goodyear MPP
{Batcher, 1980))
CM2 CM5
(lliag IV {TMCE, 198980) {TMC, 1891}

(Barnes et al, 1968)
MasPar MP1
(Nickolls, 1990)

BSP
{Kuck and Stokes. 1982)

IBM GF/11
{Beetem et at, 1985)
{b} SIMD track

Fig. 1.18 Multivector and SiMD tracks

Paraile! Computer Models . ;g

Both tracks are useful for concurrent scalar/vector processing. Detailed studies can be found in Chapter 8,
with further discussion in Chapter 13,

Muttivector Track These are traditional vector supercomputers. The CDC 7600 was the first vector dual-
processor system. Two subtracks were derived from the CDC 7600. The Cray and Japanese supercomputers
all followed the register-to-register architecture. Cray 1 pioneered the multivector development in 1978.
The Cray/MPP was a massively parallel system with distributed shared memory, to work as a back-end
accelerator engine compatible with the Cray Y-MP Series.

The other subtrack used memory-to-memory architecturc in building vector supercomputers. We have
identified only the CDC Cyber 205 and its successor the ETA10 here, for completeness in tracking different
supercomputer architectures.

The SIMD Track The Illiac IV pioneered the construction of SIMD computers, although the array
processor concept can be traced back far earlier to the 1960s. The subtrack, consisting of the Goodyear MPP,
the AMT/DAP610, and the TMC/CM-2, were all SIMD machines built with bit-slice PEs. The CM-5 was a
synchronized MIMD machine executing in a multiple-SIMD mode,

The other subtrack corresponds to medium-grain SIMD computers using word-wide PEs. The BSP
(Kuck and Stokes, 1982) was a shared-memory SIMD machine built with 16 processors updating a group
of 17 memory modules synchronously. The GF11 (Beetem et al., 1985) was developed at the IBM Watson
Laboratory for scientific simulation research use. The MasPar MP1 was the only medium-grain SIMD
computer to achieve production use in that time period. We will describe the CM-2, MasPar MP1, and CM-5
in Chapter 8.

1.5.3 Muitithreaded and Dataflow Tracks

These two architectural tracks (Fig. 1.19) will be studied in Chapter 9. The following introduction covers
eniy basic definitions and milestone systems built in the early vears.

Tera
{Alverson, Smith, et ai, 1990}

CDC 6600 HEP
(COC, 1964) {Smith 1978}
MiT/Alewife
{Agarwal et at, 1989}

{a) Multithreaded track

MIT Tagged Token fgons%on 08 & “T
(Arvind et al, 1980) ™ f; -apa fggg)"s T (Nikhil et al, 1991)
Static Dataflow
(Dennis 1974)
Manchester : EMS
Sigma 1 — ,
{Gurd & —'(Shlmada etal, 1987} (Sakas ot al, 1939}

Watson, 1982
{b) Dataflow track

Fig.1.19 Muliithreaded and dataflow tracks

40 . Advanced Computer Architecture

The conventional von Neumann machines are built with processors that execute a single context by each
processor at a time. In other words, each processer maintains a single thread of control with its hardware
resources. In a multithreaded architecture, each processor can execute multiple contexts at the same time.
The term mudtithreading implies that there are multiple threads of control in each processor. Multithreading
offers an effective mechanism for hiding long latency in building large-scale multiprocessors and is today a
mature technology.

As shown in Fig. 1.19a, the multithreading idea was pioneered by Burton Smith (1978) in the HEP system
which extended the concept of scoreboarding of multiple functionat units in the CDC 6400. Subscquent
multithreaded multiprocessor projects were the Tera computer (Alverson, Smith et al., 1990) and the MIT
Alewife (Agarwal et al.. 1989) to be studied in Section 9.4. In Chapters 12 and 13, we shall discuss the
present technological factors which have led to the design of multi-threaded processors.

The Dataflow Track We will introduce the basic concepts of dataflow computers in Section 2.3. Some
experimental dataflow systems are described in Section 9.5. The key idea is to use a dataflow mechanism,
instead of a control-flow mechanism as in von Neumann machines, to dircct the program flow. Fine-grain,
instruction-level parallelism is expleited in dataflow computers.

As listed in Fig. 1.19b, the dataflow concept was pioneered by Jack Dennis (1974) with a “static™
architecture. The concept later inspired the development of “dynamic” dataflow computers. A series of
tagged-token architectures was developed at MIT by Arvind and coworkers. We will describe the tagged-
token architecture in Section 2.3.1 and then the *T prototype {Nikhil ct al., 1991) in Section 9.5.3.

Another subtrack of dynamic dataflow computer was represented by the Manchester machine (Gurd and
Watson, 1982). The ETL Sigma | {(Shimada et al., 1987) and EM5 evolved from the MIT and Manchester
machines. We will study the EMS5 {Sakai et al., 1989) in Section 9.5.2. These dataftow machines represent
research concepts which have not had a major impact in terms of widespread use.

In science and in engineering, theory and practice go hand-in-hand, and any significant achievement
invariably relies on a judicious blend of the two. In this chapter, as the first step towards a conceptual
understanding of parallelism in computer architecture, we have looked at the models of parallel computer
systems which have emerged over the years. We started our study with a brief look at the development
of modemn computers and computer architecture, including the means of classification of computer
architecture, and in particular Flynn’s scheme of classification.
The performance of any engineering system must be quantifiable. In the case of computer systems,
" we have performance measures such as processor clock rate, cycles per instruction (CP1), word size, and
throughput in MIPs and/or MFLOPs, These measures have been defined, and basic relationships between
them have been examined. Thus the ground has been prepared for our study in subsequent chapters of how
processor architecture, systom architecture, and software determine performance. o
Next we looked at the architecture of shared memory multiprocessors and distributed memery
multicomputers, laying the foundation for a taxonomy of MIMD computers. A key system characteristic
is whether different processors in the system have access to a common shared memory and—if they do—

Paralle! Comnputer Models - 4

whether the access is uniform or non-uniform. Vector computers and SIMD computers were examined,
which address the needs of highly compute-intensive scientific and engineering applications.

Over the last two or three decades, advances in VLSI technology have resulted in huge advances in
computer system performance; however, the basic architectural concepts which were developed prior to
the “VLSI revolution’ continue to remain vatid,

Parallel random access machine (PRAM) is a theoretical model of a parallel computer. No real computer
system can behave exactly like the PRAM, but at the same time the PRAM model provides us with a
basis for the study of parallel algorithms and their performance in terms of time and/or space complexity,
Different sub-types of the PRAM model emerge, depending on whether or not multiple processors can
perform concurrent read or write operations to the shared memory.

Towards the end of the chapter, we could discern the separate architectural development tracks which
have emerged over the years in computer systems. We looked at multiple-processor systems, vector
processing, SIMD systems, and multi-threaded and datafiow systems. We shall see in Chapters 12 and 13
that, due to various technological factors, multi-threaded processors have gained in importance over the

last decade or so.

o2

Exercises

Problem 1.1 A 400-MHz processor was used to
execute a benchmark program with the foliowing
instruction mix and clock cycle counts:

Instruction type | Instruction count | Clock cycle count
Integer arithmatic 450000 1
Data transfer 320000 2
Floating point 150000 2
Control transfer 80000 2

Determine the effective CPl, MIPS rate, and execution
time for this program.

Problem 1.2 Explain how instruction set, compii-
er technology, CPU implementation and control,and
cache and memory hierarchy affect the CPU per-
formance and justify the effects in terms of program
length, clock rate, and effective CPI.

Problem 1.3 A workstation uses a 1.5 GHz pro-
cessor with a claimed 1000-MIPS rating to execute
a given program mix. Assume a one-cycle delay for

each memory access,
{a) What is the effective CPI of this computer?
(b) Suppose the processor is being upgraded
with a 3.0 GHz clock. However, even with
faster cache, two clock cycles are needed per
memory access. if 30% of the instructions
require one memory access and another 5%
require two memaory accesses per instruction,
what is the performance of the upgraded
processor with a compatible instruction set
and equal instruction counts in the given
program mix?

Problem 1.4 Consider the execution of an
object code with 2 x 10 instructions on a 400-MHz
processor. The program consists of four major types
of instructions. The instruction mix and the number
of cycles (CPI) needed for each instruction type are
given below based on the result of a program trace
experiment:

42 "R

Instruction type CPl Instructioh mix
Arithmetic and logic i 60%
Load/store with 1 18%

cache hit

Branch 4 12%
Memory reference 8 10%

with cache miss

Advanced Computer Architecture

three computers? Give reasons if you find a way to
rank them statistically.

Execution Time {in seconds}

(2) Calculate the average CPl when the program
is executed on a uniprocessor with the above
trace results.

(b) Calculate the corresponding MIPS rate based
on the CPl obtained in part (a}.

Problem 1.5 Indicate whether each of the fol-
lowing statements is true or false and justify your
answer with reasoning and supportive or counter
examples:

{a) The CPU computations and /O operations
cannot be overlapped in a multiprogrammed
computer.

(b) Synchronization of all PEs in an SIMD
computer is done by hardware rather than
by software as is often done in most MIMD
computers.

(c} As far as programmability is concerned,
shared-memory muitiprocessors offer
simpler interprocessor communication
support than that offered by a message-
passing multicomputer.

{d) In an MIMD computer, all processors must
execute the same instruction at the same
time synchronously.

(e) As far as scalability is concerned, multicom-
puters with distributed memory are more
scalable than shared-memory multiproces-
5Qrs.

Problem 1.6 The execution times (in seconds) of
four programs on three computers are given below:

Assume that 10° instructions were executed in
each of the four programs, Calculate the MIPS rating
of each program on each of the three machines.
Based on these ratings, can you draw a clear
conclusion regarding the relative performance of the

Computer A

Program Computer B | Computer C
Program 1 1 10 0
Program 2 1000 100 20
Program 3 500 1000 50
Program 4 100 800 100

Problem 1.7 Characterize the architectural op-
erations of SIMD and MIMD computers. Distinguish
between multiprocessors and multicomputers based
on their structures, resource sharing, and interpro-
cessor communications. Also, explain the differenc-
es among UMA, NUMA, and COMA, and NORMA
computers,

Problem 1.8 The following code segment
consisting of six instructions, needs to be executed
64 times for the evaluation of vector arithmetic
expression: D() =A(l) + B() x C()) for 0 < | < 63.

Load R1, B(l)
Load R2, C{l)
Multiply R1, R2
Load R3, A{l)
Add R3,R1
Store D{1). R3

/R1 « Memory (a + [)/
/R2 < Memory (+ 1)/
{R1 « (R1} x (R2)

IR3 «— Memory (Y+ 1)/
{R3 « (R3) + (R1)
IMemory (8 +) « (R3)/

where RI, R2, and R3 are CPU registers, (R1) is
the content of Rl, @ B, % and € are the starting
memory addresses of arrays B(l), C(1).A{l}, and D(l},
respectively. Assume four clock cycles for each Load
or Store, two cycles for the Add, and eight cycles for
the Multiply on either a uniprocessor or a single PE
in an SIMD machine.

{a) Calculate the total number of CPU cycles
needed to execute the above code segment
repeatedly 64 times on an SISD uniprocessor
computer sequentially, ignoring all other time
delays. .

(b) Consider the use of an SIMD computer with
64 PEs to execute the above vector operations

Parolie! Computer Models

in six synchronized vector instructions over
é4-component vector data and both driven
by the same-speed clock. Calculate the total
execution time op the SIMD machine, ignoring
instruction broadcast and other delays.

(c) What is the speedup gain of the SIMD
computer over the SIS computer?

Problem 1.9 Prove that the best parallel algo-
rithm written for an n-processor EREW PRAM
model can be no more than Oflog n) times slower
than any algorithm for a CRCW model of PRAM
having the same number of processors.

Problem 1.10 Coensider the multiplication of two
n-bit binary integers using a 1.2-um CMOS multi-
plier chip. Prove the lower bound AT? > kn*, where A
is the chip area, T is the execution time, n is the word
length, and k is a technology-dependent constant.

Problem 1.11 Compare the PRAM models with
physical models of real parallel computers in each of
the following categories:
(a) Which PRAM variant can best model SIMD
machines and how!
(b) Repeat the question in part {2} for shared-
memory MIMD machines.

Problem 1.12 Answer the folliowing questions
related to the architectural development tracks pre-
sented in Section 1.5:

{a) For the shared-memory track (Fig. 1.17), ex-
plain the trend in physical memory organi-
zations from the earlier system (C.mmp) to
more recent systems (such as Dash, etc.).

(b) Distinguish between medium-grain and fine-
grain multicomputers in their architectures
and programming requirements,

(c) Distinguish between register-to-register
and memory-to-memory architectures
for building conventional multivector
supercomputers.

(d) Distinguish between single-threaded and
multithreaded processor architectures.

- 4

Problem 1.13 Design an algorithm to find the
maximum of 7 pumbers in Oflog n) time on an
EREW-PRAM model. Assume that initially each loca-
tion holds one input value. Explain how you would
make the algorithm processor time optimal.

Problem 1.14 Develop two algorithms for fast
multiplication of two n x n matrices with a system
of p processors, where 1 < p < n’flog n. Choose
an appropriate PRAM machine model to prove that
the matrix multiplication can be done in T = O(n’/p)
time.

(a) Provethat T=0(n%)ifp=nThe corresponding
algorithrm must be shown, similar to that in
Example 1.5.

{b) Sho;v the paralle! algorithm with T = O(n) if p
=n’

Problem 1.15 Martch each of the following eight
computer systems: KSR-1, RP3, Paragon, Dash, CM-2,
VPP500, EM-5, and Tera, with one of the best de-
scriptions listed below. The mapping is a one-to-one
correspondence.

(2} A massively parallel system built with
multiple-context processors and a 3-D torus
architecture,

(b) A data-parallel computer built with bit-slice
PEs interconnected by a hypercube/mesh
network.

(c) A ring-connected multiprocessor using a
cache-only memory architecture.

(d) An experimental multiprocessor built with a
dynamic dataflow architecture.

(e} A crossbar-connected multiprocessor buile
with distributed processor/memory nodes
forming a single address space.

() A multicomputer built with commercial

microprocessors with multiple address
spaces.
(8 A scalable multiprocessor built with

distributed shared memory and coherent
caches.

(h) An MIMD computer built with a large
multistage switching network,

2

Program and Network
Properties

This chapter covers fundamental properties of program behavior and introduces major classes of
interconnection networks. We begin with a study of computational granularity, conditions for program
partitioning, matching software with hardware, program flow mechanisms, and compilation support for
parallelism. Interconnection architectures introduced include static and dynamic networks. Network
complexity, communication bandwidth, and data-routing capabilities are discussed.

1 2.1 §* CONDITIONS OF PARALLELISM |

The exploitation of parallelism has created a new dimension in computer science. [n order to
move paraliel processing into the mainstream of computing, H.T. Kung (1991} has identified
the need to make significant progress in three key areas: computation madels for parallel computing,
interprocessor communication in parallel architectures, and system integration for incorporating parallel
systems into general computing environments.

A theoretical treatment of parallelism is thus needed to build a basis for the above challenges. In practice,
parallelism appears in various forms in a computing environment. All forms can be attributed to levels of
paralielism, computational granularity, time and space complexitics, communication iatencies, scheduling
policies, and load balancing. Very often, tradeoffs exist among time, space, performance, and cost factors.

2.1.1 Data and Resource Dependences

The ability to execute several program segments in paralle! requires each segment to be independent of the
other segments. The independence comes in various forms as defined below separately. For simplicity, to
illustrate the idea, we consider the dependence retations among instructions in a program. In general, each
code segment may contain one or MOre stalements.

We use a dependence graph to describe the relations. The nodes of a dependence graph correspond to the
program statements (instructions}, and the directed edges with different labels show the ordered relations
among the statements. The analysis of dependence graphs shows where opportunity exists for parallelization
and vectorization.

" Data Dependence The ordering relationship between statements is indicated by the data dependence.
Five types of data dependence arc defined below:

Program and Network Properties " 45

(1} Flow dependence: A statement S2 is flow-dependens on statement S1 if an execution path exists from

S1 to 82 and if at least one output (variables assigned) of S1 feeds in as input {operands to be used) to
S2. Flow dependence is denoted as S1 — S2.

(2) Antidependence: Statement 82 is antidependent on statemment S1 if S2 follows S1 in program order and

3)
(4)

()

b

if the output of S2 overtaps the input to $1. A direct arrow crossed with a bar asin §1 +> 82 dicates
antidependence from S1 to 82.

Ouiput dependence: Two statements are output-dependent if they produce (write) the same output
variable. S1 > S2 indicates output dependence from S1 to §2.

1/0 dependence: Read and write are [/O statements, 1/O dependence occurs not because the same
variable is involved but because the same file is referenced by both I/Q statements.

Undmown dependence: The dependence relation between two statements cannot be defermined in the
following situations:

« The subscript of a variable is itself subscribed.
» The subscript does not contain the loop index variabie.

* A variable appears more than once with subscripts having different coefficients of the loop
variable.

+ The subscript is nonlinear in the loop index variable,

When one or more of these conditions exist, a conservative assumption is to claim unknown dependence
among the statements involved.

Example 2.1 Data dependence in programs .-

Consider the following code fragment of four instructions:

S1: Load R1, A /R1 ¢« Memory(A)
§2: Add R2, RI /R2 « (R1)+ (R2)/
83: Move R1, R3 /R1 « (R3Y

S4. Store B, R1 Memory(B) « (R1Y

As illustrated in Fig. 2.1a, 82 is flow-dependent on $1 because the variable A is passed via the register
R1. 83 is antidependent on 52 because of petential conflicts in register content in R1. 83 is output-dependent
en ST because they both modify the same register R1. Other data dependence relationships can be similariy
revealed on a pairwise basis. Note that dependence is a partial ordering relation; that is, the members of not
every pair of statements are related. For example, the statements 52 and S4 in the above program are totally
independent.

Next, we consider a code fragment involving 1/0 operations:

SI; Read (4), A(I) /Read array A from file 4/
82: Process ’ fProcess data/
Sa: Write {(4), B(I} /Write array B into file 4/

54. Close (4} Close file 4/

